Open
Close

LC Метр Прибор для измерения емкости и индуктивности на PIC16F628A. LC Метр Прибор для измерения емкости и индуктивности на PIC16F628A Звуковой сигнал «Напоминание»

Я уверен, что этот проект не является новым, но это собственная разработка и хочу, чтобы этот проект так, же был известен и полезен.

Схема LC метра на ATmega8 достаточно проста. Осциллятор является классическим и выполнен на операционном усилителе LM311. Основная цель, которую я преследовал при создании данного LC метра — сделать его не дорогим и доступным для сборки каждым радиолюбителем.

Принципиальная схема измерителя емкости и индукции

Характеристики LC-метра:

  • Измерение емкости конденсаторов: 1пФ — 0,3мкФ.
  • Измерение индуктивности катушек: 1мкГн-0,5мГн.
  • Вывод информации на ЖК индикатор 1×6 или 2×16 символов в зависимости от выбранного программного обеспечения

Для данного прибора я разработал программное обеспечение, позволяющее использовать тот индикатор, который есть в распоряжении у радиолюбителя либо 1х16 символьный ЖК-дисплей, либо 2х 16 символов.

Тесты с обоих дисплеев, дали отличные результаты. При использовании дисплея 2х16 символов в верхней строке отображается режим измерения (Cap – емкость, Ind – ) и частота генератора, в нижней же строке результат измерения. На дисплее 1х16 символов слева отображается результат измерения, а справа частота работы генератора.

Однако, чтобы поместить на одну строку символов измеренное значение и частоту, я сократил разрешение дисплея. Это ни как не сказывается на точность измерения, только чисто визуально.

Как и в других известных вариантах, которые основаны на той же универсальной схеме, я добавил в LC-метр кнопку калибровки. Калибровка проводится при помощи эталонного конденсатора емкостью 1000пФ с отклонением 1%.

При нажатии кнопки калибровки отображается следующее:

Измерения, проведенные с помощью данного прибора на удивление точны, и точность во многом зависит от точности стандартного конденсатора, который вставляется в цепь, когда вы нажимаете кнопку калибровки. Метод калибровки устройства заключается всего лишь в измерении емкости эталонного конденсатора и автоматической записи его значения в память микроконтроллера.

Если вы не знаете точное значение, можете откалибровать прибор, изменяя значения измерений шаг за шагом до получения наиболее точного значения конденсатора. Для подобной калибровки имеются две кнопки, обратите внимание, на схеме они обозначены как «UP» и «DOWN». Нажимая их можно добиться корректировки емкости калибровочного конденсатора. Затем данное значение автоматически записывается в память.

Перед каждым замером емкости необходимо сбросить предыдущие показания. Сброс на ноль происходит при нажатии «CAL».

Для сброса в режиме индуктивности, необходимо сначала замкнуть выводы входа, а затем нажать «CAL».

Весь монтаж разработан с учетом свободной доступности радиодеталей и с целью достижения компактности устройства. Размер платы не превышают размеров ЖК-дисплея. Я использовал как дискретные компоненты, так и компоненты поверхностного монтажа. Реле с рабочим напряжением 5В. Кварцевый резонатор — 8MHz.

Устройство предназначено для измерения малых сопротивлений, индуктивности, емкости и ЭПС конденсаторов. Функционально, схему можно разбить на 8 основных модулей:
- L/C генератор
- Блок источников стабильного тока (50mA/5mA/0.5mA)
- Блок, отвечающий за разряд испытуемого конденсатора
- Блок усилителей напряжения
- Блок отображения информации (Nokia LCD 3310)
- Кнопки управления
- Микроконтроллер PIC18F2520
- Коммутатор (для коммутации испытуемых компонентов)

Принцип работы LC генератора и соответственно принцип измерения индуктивности и емкости (1p - 1 uF) подробно описывать не вижу смысла. Это подробно изложено в описаниях к подобным устройствам коих в интернете масса. Отмечу лишь некоторые особенности, которые были применены в данной схеме и алгоритме расчета. Для измерения индуктивности и емкости используются разные пары щупов... такой подход позволил повысить точность измерения, организовав постоянную, автоматическую, частичную калибровку. Т.е. дрейф частоты LC генератора не оказывает столь значительного влияния на точность измерения как это было ранее. Также новый подход к расчетам позволил избавиться от влияния межвитковой емкости измеряемой индуктивности на результат измерения (она учитывается при калибровке).

Измерение емкости электролитических конденсаторов организовано по классическому методу - заряд конденсатора стабильным источником тока до определенного уровня напряжения (0,2v) с параллельным подсчетом времени заряда. В схеме это реализовано сл. образом. Подключенный испытуемый конденсатор предварительно разряжается (Q1) после чего на него подается стабильное напряжение и включается таймер отсчета времени. В момент достижения напряжением уровня 0,2v. срабатывает внутренний компаратор и фиксируется время таймера. Далее происходит расчет емкости конденсатора. Для сокращения времени измерения в меню можно выбрать максимальный предел измерения емкости испытуемого конденсатора (100/300/600 тысяч микрофарад).

Измерение ЭПС (ESR) конденсатора и измерение малых сопротивлений выполняется по сл. принципу. На испытуемый конденсатор подается короткий импульс напряжения формируемого источником стабильного тока. Это вызывает всплеск напряжения, величина которого пропорциональна ESR конденсатора. Два последовательно включенных ОУ увеличивают этот сигнал до необходимого уровня. Далее, подключенный к выходу ОУ микроконтроллер регистрирует пик импульса и выполняет аналого-цифровое преобразование для дальнейшего расчета величины напряжения. Зная значение силы тока импульса и напряжение, производится расчет ESR.

При измерении ESR малых емкостей (<10uF) происходит незначительное завышение показаний измерителя. Не смотря на то, что длительность импульса всего 1-2uS этого достаточно для того, чтобы конденсатор успел немного зарядиться, тем самым слегка завысив значение измеряемого напряжения.

Некоторые особенности конструкции которые следует учесть при повторении. Подстроечные резисторы в блоке источника стабильного тока (2. I_source) лучше заменить на постоянные, после подбора их примерного значения в процессе настройки (описано ниже).

Подстроечные резисторы R3 и R8 в блоке усилителя (4. Amp) рекомендуется использовать многооборотные. Это позволит выполнить точную подстройку коэф. усиления от значения которого зависит точность работы прибора (особенно критично для
ESR).

Вместо двух ОУ MCP601 можно использовать одну MCP602.
Реле в блоке коммутации (8. Switch) необходимо использовать бистабильное с двумя обмотками рассчитанными на напряжение 5v.

Конденсаторы С2 и С5 танталовые или неполярная "керамика". Дроссель L1 - типа "гантелька". Еще лучше, если эта "гантелька" будет в ферритовом "стакане".

Блок "S1 optional" это блок управления подачей напряжения питания на LC генератор. Опционально, существует возможность отключать генератор в режиме измерения "электорлитов" для снижения энергопотребления схемы. Блок S1 можно не использовать, просто подключив LC генератор к питанию.

Во избежание выхода из строя микроконтроллера, перемычку Jmp следует устанавливать только после настройки напряжения в точке "B" резистором "R_Vbat" (описано ниже).

В схеме отсутствует модуль частотомера (предделитель и буфер) хотя программно сам частотомер реализован. Измеряемую частоту (с «правильной» амплитудой) следует подавать на 6 вывод MK (F). Необходимо понимать, что для работы режимов измерителя емкости и индуктивности на вход 6 MK должен подаваться сигнал с выхода LC генератора. С этой целью на схеме изображен коммутатор. Один из возможных вариантов схематического решения модуля частотомера (предделитель/буфер, коммутация) пока находится в стадии разработки. При необходимости коммутацию можно организовать на обыкновенных переключателях, а в качестве схем входных цепей (делитель\буфер) использовать одну из многочисленных схем имеющихся в интернете.

Настройка и работа с устройством.

При первом включении устройства следует сбросить все настройки к настройкам по умолчанию. Для этого нужно нажать кнопку 3 и включить питание устройства. В дальнейшем эту операцию можно выполнить из меню «Function» раздел "Reset". После сброса желательно произвести откл-вкл устройства. По умолчанию, после сброса настроек значение контраста «Contrast» устанавливается как 200. Это значение можно изменить в меню настроек или выполнить откл-вкл устройства удерживая кнопку 4 в нажатом состоянии. В этом случае после включения устройство сразу перейдет в меню регулировки контраста. Далее кнопкой 4 контраст увеличивается, а кнопкой 3 - уменьшается.

Настройка источников стабильного тока.

На точность измерения значительное влияние оказывает аккуратность настройки источников стабильного тока. Для настройки нужно перейти в меню «Function» и далее выбрать раздел "I_50" кнопкой «OK». Затем подключить к клеммам измерения С/ESR миллиамперметр. Миллиамперметр будет показывать значение тока будущего импульса для измерения ESR. C помощью подстроечного резистора (R3) необходимо установить этот ток как можно ближе к значению 50mA. После этого запомнить показания и отключить миллиамперметр. Далее с помощью кнопок +/- установить в меню устройства значение отражаемое ранее на миллиамперметре с точностью до десятых и сохранить его нажав кнопку OK. Ту же процедуру необходимо выполнить для источников тока 5 и 0,5mA... разделы "I_5" и "I_05", отрегулировав ток соответствующими подстрочными резисторами, при этом измеренное значение должно быть вписано в меню устройства с
точностью до сотых/тысячных.

Важно помнить, что переключение между разделами должно производиться при отключенном миллиамперметре. В дальнейшем рекомендуется заменить подстроечные резисторы на постоянные и повторить процедуру настройки.

Настройка ОУ.

Процесс настройки ОУ сводится к подстройке K усиления каждого ОУ к значению указанному в разделах Ampl и Amp2. Для этого нужно выбрать режим измерения ESR/C/R и далее:

1. Подключить к клеммам электролит с заведомо известной емкостью (лучше взять конденсатор с небольшой емкостью 10-50uF) и с помощью построечного резистора R3 и значения переменной Amp1 (~6.0) в меню настройки, добиться соответствующих показаний на экране прибора.
2. Затем подключить к клеммам известное сопротивление (желательно 1 - 10 Ом) и с помощью построечного резистора R8 и переменной Amp2 (~6.0) в меню настройки, добиться соответствующих показаний на экране прибора.

На точность показаний при измерении сопротивлений будет влиять точность установки значения силы тока для источников тока
0.00 -1.00 Om - раздел "I_50"
1.00 -10.0 Om - раздел "I_5"
10.0 -100 Om - раздел "I_05"

Настройка LC генератора.

Настройка LC генератора сводится к подбору индуктивности L1 и конденсатора С1 таким образом, чтобы частота генератора, которую можно контролировать с помощью режима "Oscillator" была в диапазоне 900кГц. С2 и С5 должны быть танталовыми или неполярными "керамика". Калибровочный конденсатор может быть любым в диапазоне 500-1200 pF. Главное чтобы это был конденсатор с минимальным ТКЕ и с известным вам значением емкости. Очень хорошо, если есть возможность предварительно измерить его реальную емкость на каком-нибудь калиброванном измерителе. Значение суммарной емкости C_cal и С3 необходимо занести в раздел "6.Ccal". С3 можно не устанавливать (....подсмотрел в одном аналогичном решении, как возможный вариант снижения общего ТКЕ).

Индикатор заряда батареи.

Настройка индикатора заряда сводится к установке в точке "B" напряжения равного примерно 1/3 напряжения батареи питания. Для этого необходимо измерить напряжение батареи питания в точке "A" (при включенном приборе) U1. Затем подключить вольтметр в точку "B" добиться с помощью регулировки резистора «R_Vbat» показаний вольтметра U2 равным примерно 1/3 от U1. Далее рассчитать коэффициент деления K_div = U1/U2 и записать значения в меню в соответствующие разделы настроек. Также указать в настройках значение напряжения полностью заряженной батареи питания "V_bat" и минимальный уровень напряжения батареи при котором прибор будет сигнализировать о необходимости заменить/зарядить батарею.

Также, для повышения точности работы АЦП желательно указать в меню точное напряжение питания микроконтроллера V_ref (по умолчанию равно 5v) измерив его при включенном приборе в точке V_ref.

Измерение ESR/C/R (С 0,1 - 600 000 uF)

Для измерения необходимо:

2. Переключить устройство с помощью кнопки "Mode" (далее M) в режим ESR/C/R

(C)

Следует отметить, что на скорость проведения измерения влияет емкость измеряемого конденсатора. Максимальный предел измерения можно выбрать в меню «Function» (C_max) (указано в тыс. микрофарад)

Калибровка в режиме ESR/C/R.

Калибровка служит для компенсации влияния длины проводов клем и др. на результат измерения внутреннего сопротивления. Для проведения калибровки необходимо находясь в режиме ESR/C/R нажать кнопку «Calibration» (далее С). При появлении меню «Close probes» (замкнуть щупы) необходимо замкнуть щупы устройства до окончания обратного отсчета на экране. После выполнения процесса калибровки, информация о настройках будет автоматически сохранена в энергонезависимой памяти устройства, что позволит в дальнейшем не выполнять калибровку при каждом последующем включении устройства.

Измерение С (C < 1uF)

Для измерения необходимо:
1. Включить устройство (клеммы для подключения измерительного компонента свободные)
2. Переключить устройство с помощью кнопки "M" в режим C-meter
3. При необходимости выполнить калибровку (описано ниже)
4. Подключить измеряемый компонент к клеммам
5. Экран устройства отобразит результат измерений.

Калибровка в режиме C

Калибровка служит для компенсации влияния длины проводов клем и др. на результат измерения емкости конденсатора. Для проведения калибровки необходимо находясь в режиме C (клеммы подключения измерительного компонента разомкнуты, измеряемый конденсатор отключен) нажать кнопку "С".

Измерение L

Для измерения необходимо:
1. Включить устройство (клеммы для подключения измерительного компонента свободные)
2. Переключить устройство с помощью кнопки "M" в режим L-meter
3. При необходимости выполнить калибровку (описано ниже)
4. Подключить измеряемый компонент к клеммам
5. Экран устройства отобразит результат измерений.
6. При измерении индуктивности (особенно малых номиналов) для получения более высокой точности измерения можно в процессе измерения (не отключая измеряемую индуктивность) выполнить калибровку нажатием кнопки «С». При этом прибор выполнит калибровку и на экране будет отражено значение подключенной индуктивности максимально близкое к реальному.

class="eliadunit">

Калибровка в режиме L

Калибровка служит для компенсации влияния длины проводов клем и др. на результат измерения индуктивности. Существует два вида калибровки - «глубокая» для расчета индуктивности щупов и «обычная» для коррекции дрейфа генератора. Обычная калибровка выполняется нажатием кнопки «С» в режиме L-meter. Калибровка может выполняться с подключенной измеряемой индуктивностью к щупам устройства.

Для выполнения «глубокой» калибровки следует нажать кнопку «С» и удерживать ее в нажатом состоянии до появления надписи «Close probes and take away hand» (замкнуть щупы и убрать руки) далее замкнуть измерительные щупы до окончания обратного отсчета на экране устройства, убрать руки и дождаться окончания процесса калибровки. После калибровки разомкнуть щупы. Глубокая калибровка может не проводиться постоянно т.к. после выполнения «глубокой» калибровки, значения индуктивности щупов подключения, сохраняются в энергонезависимой памяти микропроцессора.

Измерение F

Для измерения частоты необходимо:
1. Включить устройство
2. Переключить устройство с помощью кнопки "M" в режим F-meter
3. Выбрать режим работы (с предделителем или без) с помощью кнопки «/»
4. Подать измеряемую частоту на вход «F» (6й вывод МК).

Изменить коэффициент деления применяемого предделителя можно с помощью кнопки «К». После установки коэффициента и сохранения «кнопка ОК» значение будет сохранено в энергонезависимой памяти устройства. Схема устройства не содержит модули частотомера (предделитель и буфер).

Звуковой сигнал «Напоминание»

Если измерения не проводятся более ~1 минуты, прибор начинает издавать прерывистый звуковой сигнал. В дальнейшем сигнал повторяется каждые ~20 сек. Звуковой сигнал «напоминание» не будет включаться, в случае если в приборе установлен режим «Без звука».

Основные технические характеристики прибора:

Чувствительность в диапазоне 1 (10Гц - 50МГц) со входа А, мВ не хуже 50 Входное сопртивление в диапазоне 1, МОм 1,0+0,1 Погрешность метода измерений в диапазоне 1, Гц +1 Чувствительность в диапазоне 2 (50МГц - 1100МГц)со входа В, мВ не хуже 50 Входное сопртивление в диапазоне 2, Ом 50+1 Погрешность метода измерений в диапазоне 2, Гц +64 Минимальная измеряемая емкость, пФ 0,1 Максимальная измеряемая емкость, мкФ не менее 2 Минимальная измеряемая индуктивность, нГн 1,0 Максимальная измеряемая индуктивность, Гн не менее 3
Структурная схема прибора

В состав структурной схемы прибора входят следующие блоки:

  • усилитель-формирователь частотомера диапазона 1 (10Гц - 50МГц) - Вход А;
  • предварительный делитель с ограничителем частотомера диапазона 2 (50МГц - 1100МГц) - Вход В;
  • LC-автогенератор для измерения емкости и индуктивности;
  • коммутатор входных сигналов (DD3);
  • блок управления и индикации (DD4 и H1).

Усилитель-формирователь 1-го диапазона частотомера рассмотрим подробнее, так как обычно радиолюбители не уделяют должного внимания этому ответственному узлу, и как правило ограничиваютя какскадом усиления на одном транзисторе, а в результате не получают возможности даже приблизится к промышленным измерительным приборам (Ч3-75, например). В основу схемы форирователя легла конструкция (2) в которой были заменены транзисторы дифференциального каскада, а также выходной ненасыщяющийся ключ - на каскад усилителя с ОЭ, т.к. предыдущий проявил склонность к возбуждению на частотах выше 40МГц. Формирователь состоит из входного аттенюатора R3, R4, C3, ограничителя VD3, VD4, услилителя с высоким входным сопротивлением VT1, дифференциального каскада VT3, VT4, усилителя VT6 и формирователя ТТЛ-уровня на элементах DD2.2 и DD2.5. В сток транзистора VT1 включен подстроечный резистор R9, с помощью которого балансируетя дифференциальный усилитель.

Данная схема имеет небольшую сложность, малое потребление и высокие показатели чувствительности.

Большинство микроконтроллеров PIC позволяет измерять частоту со входа T0CKI выше гарантированных производителем 50МГц, примерно до 60 - 65 МГц.

2-й диапазон частотомера представлен предварительным делителем (прескалером) Philips SA701D в типовой схеме включения делителя на 64. Наличие встроенного усилителя высокой чувствительности (5мВ на частоте 1ГГц) позволило отказаться от внешней схемы и сильно упростить конструкцию, к прочим достоинствам можно отнести малый ток потребления (6мА на частоте 1ГГц) и малые габариты. Элементы VT5, DD2.1, DD2.6, R10, R16 и R17 служат для преобразования сигнала в уровни ТТЛ.

Входное сопротивление в этом диапазоне - 50 Ом, стандарт для подобных устройств (см. например технические характеристики счетчиков частоты CUB или SCOUT M40 от Optoelectronics). Проффесиональные частотомеры (Ч3-75) имеют входное сопротивление 1МОм до 1ГГц, но в радиолюбительских условиях обычно этого не требуется, и следовательно, нерационально в данной конструкции.

Для измерения емкости и индуктивности применен частотный метод, при котором измеряемый элемент включается в контур LC-генератора, полученная частота измеряется и зная эталонный элемент L или С можно вычислить искомый по формуле определяющей частоту колебаний контура: f=1/(2*PI*SQR(L*C)).

LC-генератор собран на компараторе DA1, идея подобной конструкции принадлежит , и практически не претерпела изменений, за исключением замены компаратора LM311 на К554СА3 в корпусе DIP8 - IL311AN (производства ПО ИНТЕГРАЛ), и включении на выходе генератора буферного элемента DD2.4. Это дало возможность расширить верхний предел измерений L и C с 150мГн до 3Гн и с 1.5мкФ до 4мкФ соответственно. На оригинальном LM311 производства SGS-Thomson результаты были подобны полученным в . Так что рекомендуем применение отечественного компаратора. (Он веселее работает в режиме автогенератора:)

Элементы L1 и C4 образуют основной колебательный контур, к которому подключается измеряемый элемент: индуктивность последовательно с L1, емкость параллельно C4. Переключатели S1 и S2 выбирают режим измерений L или C, если оба переключателя отжаты, то включается режим калибровки. В этом режиме входные клеммы замыкаются между собой, и с помощью реле в контур из элементов L1, C4 подключается эталонный конденсатор C5. По результатам измерений двух частот (с С5 и без него) вычисляются истинные значения образцовых элементов с учетом конструктивных емкостей и индуктивностей всего генератора, а также температурного дрейфа параметров элементов. Вычисленные значения используются в дальнейшем для вычисления значения измеряемого параметра.

Измерением частоты и математическими вычислениями занимается микроконтроллер (PIC16C622 или PIC16F628) MICROCHIP (DD4). Измеренная частота пересчитывается по формулам в емкость или индуктивность. Математические библиотеки для вычислений с плавающей точкой взяты из . Для измерения частоты используется метод досчета , что позволяет измерять частоту до 50МГц с точностью +1Гц. Скорость счета во всех режимах - одно измерение в секунду. Тактирование микроконтроллера производится генератором с внешним кварцевым резонатором частотой 4МГц. Для повышения точности измерений рекомендуется использовать в качестве тактового опорный генератор от сотового телефона, мы использовали с частотой 14,85 МГц - как самые распространенные. При этом необходимо использовать микроконтроллер с соответствующей прошивкой для работы с новой тактовой частотой.

Режимы работы переключаются с помощью переключателей S1, S2 и кнопок S3 - S5.

  • S3 - режим отображения частоты (Гц/кГц/МГц). Позволяет выбрать наиболее удобный для восприятия результат измерений. В режиме измерения "L/C" выбор предела происходит автоматически.
  • S4 - режим работы прибора: измерение частоты со входа А (10Гц - 50МГц), измерение частоты со входа B (50МГц - 1000МГц), измерение "L/C" (что именно, определяется положением S1 и S2)
  • S5 - принудительная калибровка устройства. Автоматическая калибровка происходит при первой смене режима работы прибора с измерения частоты на измерение L или C.

Микросхема DD3 используется для коммутации входных сигналов от разных источников на вход микроконтроллера T0CKI/RA4 (выв. 3/DD4).

Для отображения режимов работы и результатов измерений используется двухстрочный алфавитно-цифровой ЖКИ SC1602BULT (16 символов, 2 строки) SUNLIKE или совместимый с ним других фирм (DataVision, Wintek, Bolumin).

Данная модель индикатора, по числу отображаемых символов избыточна для этого применения, но ввиду массовых поставок для других потребителей имеет наименьшую цену и свободно доступна для приобретения даже на радиорынке. Эта модель имеет встроенные светодиоды подсветки, которые можно задейсвовать при питании устройтва от выносного адаптера. Резисторы R23-R24 определяют контрасность индикатора, вместо них можно установить подстроечный резистор для регулировки, но как показала практика этого не требуется. Для экономии портов микроконтроллера, задействованных для управления индикатором, используется режим в котором данные передаются полубайтами через входы DB4-DB7, неиспользуемые входы DB0-DB3 оставить свободными. Еще надо заметить, что распиновка SUNLIKE отличается от всех остальных (Wintek, Bolumin, DataVision) двумя выводами: 1-й +5В, 2-й 0В, у всех других наоборот! Почему так - неясно, надо просто запомнить.

Настройка.

При наличии образцовых или эталонных приборов настройка измерителя достаточно проста.

Работа с прибором.

При подаче питающего напряжения прибор устанавливается в режим измерения частоты со входа А. Индикация частоты - в герцах. Нажатием на S3 при необходимости выбирается режим индикации частоты.

9999999999 Гц 9999999.99 кГц 9999999.9 кГц 9999999 кГц 9999.99 МГц 9999.9 МГц 9999 МГц

Выбор режима работы осуществляется нажатием на S4. При выборе режима измерений "L/C" необходимо откалибровать прибор, о чем сообщает индикатор надписью "NO CALIBRATED". Для этого отжимают оба переключателя S1 и S2, на дисплее появляется надпись "CALIBRATION", начинается процесс калибровки. После его завершения появляется надпись "CALIBRATION ОК". Теперь можно выбрать режим измерений L или C нажатием на соответствующий переключатель S1 или S2. LC-метр имеет 3 поддиапазона для каждого измеряемого параметра с автоматическим переключением между ними.

Емкость Индуктивность 0.0 - 999.9 пФ 0 - 999 нГн 1.00 - 999.99 нФ 1.00 - 999.99 мкГн 1.00 - 999.99 мкФ 1.00 - 9999.99 мГн

Если прибор долго работает в режиме "L/C", то может понадобиться принудительная калибровка в связи уходом параметров LC-генератора. Для проведения принудительной калибровки необходимо отжать соответствующий режиму работы переключатель S1 или S2 и нажать на кнопку S5. После появления надписи "CALIBRATION ОК" нажимается переключатель S1 или S2 и продолжаются измерения.

Конструкция и детали.

Прибор смонтирован на односторонней печатной плате размерами 145x80 мм.

Внимание! На плате 6 проволочных перемычек и 3! "проводных":

Между отверстиями 13 и 14 на лицевой стороне платы;
- между выводом 11 DD4 и выводом 14 DD3 (сигнал A0);
- между выводом 12 DD4 и выводом 2 DD3 (сигнал A1);

Две последние на чертеже расположения деталей не показаны, они припаиваются непосредственно к соответствующим выводам микросхем со стороны печати. Как показала практика - без них конструкция не работает:) В устройстве использованы резисторы МЛТ-0,125, электролитические конденсаторы типа К50-35, импортные. Резисторы R1-R2 типа Р1-12-0,125 (безвыводные). Конденсаторы C6-C7 типа К10-17В (безвыводные). Конденсаторы C4 и С5 - типа К73-9 или аналогичные пленочные, со стабильными параметрами! Конденсатор C17 - подстроечный типа КТ4-23 или аналогичный. Остальные конденсаторы типа К10-17б, К10-19. Катушка индуктивности L1 - стандартный дроссель типа ДМ, ДПМ на 60мкГн. Транзистор VT1 - КП305Д, замена на такой же с другой буквой ухудшает чувствительность. VT2 - либой НЧ с коэффициентом усиления не менее 100, VT3 и VT4 - любые высокочастотные pnp, транзисторы VT5 и VT6 - любые высокочастотные npn с высоким коэффициентом усиления. Диоды VD1, VD2 - КД409А9, или аналогичные с меньшей емкостью. Диоды VD3, VD4 - КД409А1, можно применить другие ВЧ с минимальной емкостью, для сравнения - у КД522 емкость в два раза больше, соответственно чувствительность прибора будет хуже. Диод VD5 - любой импульсный. Микросхема DD2 - КР1533ТЛ2 замена на серии 1554, 1594 ухудшает чувствительность. Микросхема DD3 - КР1533КП2, КР1533КП12 замена на серии 1554, 1594 ухудшает помехоустойчивость. Компаратор DA1 - К554СА3 в корпусе DIP8 (IL311AN), замена на импортный ухудшает верхний диапазон измерений. Прескалер SA701D можно заменить на SA702D или применить любой другой с корректировкой схемы и печатной платы. Переключатели S1 - S2 типа PB-22E08 или PS580L по каталогу "Чип и Дип". Кнопки S3 - S5 типа ПКн с длиной толкателя 12 - 16мм. XS1-XS2 - гнезда СР-50-73ФВ или подобные, XS3- зажим для подключения акустических систем. Реле P1 D1A050000 ф.Cosmo (по каталогу "Чип и Дип") или аналогичное малогабаритное. Можно и самодельное:)

Сделал как то себе этот крайне полезный и не заменимый прибор, из-за острой необходимости в измерении емкости и индуктивности. Обладает на удивление очень хорошей точностью измерения при этом схема довольно простая базовым компонентом которой является микроконтроллер PIC16F628A.

Схема:

Как видно, основные компоненты схемы это PIC16F628A, знакосинтезирующий дисплей (можно использовать 3 типа дисплея 16х01 16х02 08х02), линейный стабилизатор LM7805, кварцевый резонатор на 4 Мгц, реле на 5В в DIP корпусе, двух секционный переключатель (для переключения режимов измерения L или C).

Прошивки для микроконтроллера:

Печатная плата:

Файл печатной платы в формате sprint layout:

Исходная плата разведена под реле в DIP корпусе.

У меня такого не нашлось и я использовал что было, старое компактное как раз подходящее по размерам реле. В качестве танталовых конденсаторов использовал совковые танталовые. Переключатель режима измерения, выключатель питания и кнопку калибровки использовал, снятые когда то со старых совковых осциллографов.

Провода измерительные:

Должны быть как можно короче.

Во время сборки и настройки руководствовался вот этой инструкцией:

Соберите плату, установите 7 перемычек. Установите в первую очередь перемычки под PIC и под реле и две перемычки рядом с контактами для дисплея.

Используйте танталовые конденсаторы (в генераторе) — 2 шт.
10мкф.
Два конденсатора 1000пФ должны быть полиэстеровые или лучше (прим. допуск не более 1%).

Рекомендуется использовать дисплей с подсветкой (прим. ограничительный резистор 50-100Ом на схеме не указан контакты 15, 16).
Установите плату в корпус. Соединение между плату и дисплей по вашему желанию можно припаять, или сделать используя разъем. Провода вокруг переключателя L/C сделайте как можно короткими и жесткими (прим. для уменьшения «наводок» и для правильной компенсации измерений особенно для заземленного конца L).

Кварц следует использовать 4.000MHz, нельзя использовать 4.1, 4.3 и т.п.

Проверка и калибровка:

  1. Проверьте установку деталей на плате.
  2. Проверьте установку всех перемычек на плате.
  3. Проверьте правильность установки PIC, диодов и 7805.
  4. Не забудьте – «прошить» PIC до установки в LC — метр.
  5. Осторожно включите питание. Если есть возможность, используйте регулируемый источник питания в первый раз. Измерять ток при увеличении напряжения. Ток должен быть не более 20мА. Образец потреблял ток 8мА. Если ничего не видно на дисплее покрутите переменный резистор регулировки контраста. На дисплее должно быть написано «Calibrating », затем C=0.0pF (или С= +/- 10пФ).
  6. Подождите несколько минут («warm-up»), затем нажмите кнопку «zero» (Reset) для повторной калибровки. На дисплее должно быть написано C=0.0pF.
  7. Подключите «калибровочный» конденсатор. На дисплее LC – метра увидите показания (с +/- 10% ошибкой).
  8. Для увеличения показаний емкости замкните перемычку «4» см. картинку ниже (прим. 7 ножка PIC). Для уменьшения показаний емкости, замкните перемычку «3» (прим. 6 ножка PIC) см. картинку ниже. Когда значение емкости будет совпадать с «калибровочным» удалите перемычку. PIC запомнит калибровку. Вы можете повторять калибровку множество раз (до 10,000,000).
  9. Если есть проблемы с измерениями, вы можете с помощью перемычек «1» и «2» проверить частоту генератора. Подсоедините перемычку «2» (прим. 8 ножка PIC) проверьте частоту «F1» генератора. Должно быть 00050000 +/- 10%. Если показания будут слишком большие (near 00065535), прибор выходит в режим «переполнение» и показывает ошибку «overflow» . Если показание слишком низкие (ниже 00040000), вы потеряете точность измерения. Подсоедините перемычку «1» (прим. 9 ножка PIC) для проверки калибровки частоты «F2». Должно быть около 71% +/- 5% от «F1» которые вы получили подсоединяя перемычку «2».
  10. Для получения максимально точных показаний можно регулировать L до получения F1 около 00060000. Предпочтительней устанавливать «L» = 82 мкГн на схеме 100мкГн (вы можете не купить 82мкГн;)).
  11. Если на дисплее 00000000 для F1 или F2, проверьте монтаж около переключателя L/C — это означает, что генератор не работает.
  12. Функция калибровки индуктивности автоматически калибруется, когда происходит калибровка емкости. (прим. калибровка происходят в момент срабатывания реле когда замыкаются L иC в приборе).

Тестовые перемычки

  1. Проверка F2
  2. Проверка F1
  3. Уменьшение C
  4. Увеличение C

Как проводить измерения:

Режим измерения емкости:

  1. Переводим переключатель выбора режима измерения в положение «C»
  2. Нажимаем кнопку «Zero»
  3. Появляется надпись «Setting! .tunngu.» ждем пока не появится «C = 0.00pF»

Режим измерения индуктивности:

  1. Включаем прибор, ждем пока загрузится
  2. Переводим переключатель выбора режима измерения в положение «L»
  3. Замыкаем измерительные провода
  4. Нажимаем кнопку «Zero»
  5. Появляется надпись «Setting! .tunngu.» ждем пока не появится «L = 0.00uH»

Ну вроде все, вопросы и замечания оставляйте в комментариях под статьей.

Степан Миронов.

Измеритель ESR+LCF v3.

Давно не секрет, что половина отказов в современной бытовой технике связана с электролитическими конденсаторами.
Вздувшиеся конденсаторы видно сразу, но есть и такие, которые выглядят вполне нормально. Все неисправные конденсаторы имеют потерю ёмкости и увеличенное значение ESR, или только увеличенное значение ESR(ёмкость нормальная или выше нормы).
Вычислить их - не так просто, приходится выпаивать их, если параллельно подключено несколько конденсаторов, или параллельно к измеряемому конденсатору подключены какие либо шунтирующие элементы, проверять и исправные запаивать обратно. Многие конденсаторы приклеены к плате, находятся в труднодоступных местах и демонтаж/монтаж их, занимает много времени. Ещё при нагревании, неисправный конденсатор может на время восстанавливать работоспособность.
Поэтому радиомеханики, да и не только они, мечтают иметь прибор для проверки исправности электролитических конденсаторов, внутри-схемно, не выпаивая их.
Хочу огорчить, на все 100% - это не возможно. Не возможно правильно измерять ёмкость и ESR, но проверить исправность электролитического конденсатора без выпаивания, во многих случаях возможно по увеличенному значению ESR.
Неисправные конденсаторы с увеличенным ESR и нормальной ёмкостью встречаются часто, а с нормальным ESR и с потерей ёмкости нет.
Уменьшение ёмкости от номинальной на 20% - не считается дефектом, это нормально даже для новых конденсаторов, поэтому для начальной дефектации электролитического конденсатора достаточно измерить ESR. Показания ёмкости при внутрисхемных измерениях, только для информации и в зависимости от шунтирующих элементов схемы, могут быть значительно завышенными или не измеряться.

Ориентировочная таблица допустимых значений ESR, приведена ниже:

Было разработано несколько версий измерителя ESR.
Измеритель ESR+LCF v3 (третья версия), разрабатывался с учётом максимальных возможностей при внутрисхемных измерениях. Кроме основного измерения ESR (на дисплее Rx>x.xxx), имеется дополнительная функция для внутрисхемного вычисления ESR, названная анализатором - "aESR" (на дисплее a x.xx).
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR.
При измерении исправного конденсатора “aESR” и “ESR” близки по значению. На дисплее дополнительно выводится значение “aESR”.
Эта функция не имеет прототипа, поэтому на момент подготовки основной документации, был очень не большой опыт в её использовании.

На данный момент, есть множество положительных отзывов от разных людей с рекомендациями по её использованию.
Данный режим не даёт сто процентного результата, но при знании схемотехники и накопленном опыте - эффективность данного режима велика.
Результат внутрисхемного измерения, зависит от шунтирующего влияния элементов схемы.
Полупроводниковые элементы (транзисторы, диоды) не оказывают влияния на результат измерения.
Наибольшее влияние оказывают низкоомные резисторы, индуктивности, а так же другие конденсаторы, подключенные к цепям измеряемого конденсатора.
В местах, где шунтирующее влияние на проверяемый конденсатор не велико, неисправный конденсатор хорошо измеряется в обычном режиме "ESR", а в местах, где шунтирующее влияние велико, неисправный конденсатор (не выпаивая) можно вычислить только с помощью "анализатора - aESR".

Следует помнить, что при внутрисхемных измерениях исправных электролитических конденсаторов, показания "aESR" в большинстве случаев немного выше показаний "ESR". Это нормально, так как многочисленные соединения с измеряемым конденсатором, вносят погрешность.

Наиболее сложными местами для измерения, являются схемы с одновременным шунтированием множеством элементов разных видов.

На схеме выше, неисправный конденсатор С2+1ом, шунтируется C1+L1+C3+R2.

При измерении такого конденсатора, значение ESR в норме, а анализатор показывает ”0,18” - это превышение нормы.

К сожалению, не всегда удаётся внутри-схемно определить исправность электролитического конденсатора.
Например: в материнских платах по питанию процессора не получится, там слишком велико шунтирование. Радиомеханик, как правило, ремонтирует однотипную аппаратуру, и со временем у него накапливается опыт, и он уже точно знает в каком месте и как диагностируются электролитические конденсаторы.

И так, что же может мой измеритель.

Измеритель ESR+LCF v3 - измеряет

Дополнительные функции:

В режиме ESR можно измерять постоянные сопротивления 0.001 - 100Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно (т.к. измерение производится в импульсном режиме и измеряемое сопротивление шунтируется). Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» (при этом измерение производится при постоянном токе 10мА). В этом режиме диапазон измеряемых сопротивлений равен 0.001 - 20Ом.
- В режиме ESR при нажатой кнопке «L/C_F/P» включается функция внутрисхемного анализатора (подробное описание см. далее).
- В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+».
- Индикация разряда батареи.
- Автоматическое отключение - около 4х минут (в режиме ESR-2мин.). По истечении времени простоя, загорается надпись "StBy" и в течении 10 сек, можно нажать любую кнопку и продолжится работа в том же режиме.

В современной технике электролитические конденсаторы часто шунтируются индуктивностью менее 1 мкГн и керамическими конденсаторами. В обычном режиме здесь, измеритель не способен выявить неисправный электролитический конденсатор без выпаивания. Для этих целей, добавлена функция внутрисхемного анализатора.
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR(Rx) = aESR(a). На дисплее дополнительно выводится значение aESR (a). Наиболее эффективна данная функция при измерении ёмкостей выше 300мкФ. Для включения этой функции необходимо нажать кнопку «L/C_F/P».

Принципиальная схема.

"Сердцем измерителя является микроконтроллер PIC16F886-I/SS. В этом измерителе также, без изменения прошивки, могут работать и микроконтроллеры PIC16F876, PIC16F877.

Конструкция и детали.

ЖК - индикатор на основе контроллера HD44780, 2 строки по 16 знаков.
Контроллер - PIC16F886-I/SS.
Транзисторы BC807 - любые P-N-P, близкие по параметрам.
ОУ TL082 - любой этой серии (TL082CP, AC и др.). Возможно применение ОУ MC34072. Применение других ОУ (с другим быстродействием) не рекомендуется.
Полевой транзистор P45N02 - 06N03, P3055LD и др., подходит практически любой из материнской платы компьютера.
Дроссель L101 - 100мкГн +-5%. Можно изготовить самому или применить готовый. Диаметр провода намотки должен быть не менее 0.2мм.
С101 - 430-650пФ с низким ТКЕ, К31-11-2-Г - можно найти в КОС отечественных телевизоров 4-5 поколения (КВП контура).
С102, С104 4-10мкФ SMD - можно найти в любой старой компьютерной материнской плате Пентиум-3 возле процессора, а также в боксовом процессоре Пентиум-2.
BF998 - можно найти в СКВ, телевизоров и видеомагнитофонов ГРЮНДИК.
SW1 (размер7*7mm)- обратите внимание на распиновку, встречаются двух типов. Разводка печатной платы соответствует рис 2.

Печатная плата выполнена из одностороннего стеклотекстолита.

Одновременно печатная плата служит основанием для корпуса. По периметру платы припаяны полоски стеклотекстолита шириной 21мм.

Крышки сделаны из чёрной пластмассы.

Сверху расположены кнопки управления, а спереди три гнезда типа «ТЮЛЬПАН», для съёмного щупа. Для режима “R/ESR” - гнездо более высокого качества.

Конструкция щупа:

В качестве щупа, использован металлический штекер типа « тюльпан». К центральному выводу припаяна игла.

Из доступного материала для изготовления иглы можно использовать латунный стержень, диаметром 3мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой.

Ниже в архиве есть все необходимые файлы и материалы для сборки и настройки данного измерителя.

Удачи всем и всего наилучшего!

miron63 .

Архив Измеритель ESR+LCF v3.